Заказать
Промышленный портал
Аренда, конвейер, инвестиции, производство, оборудование, технологии
Главная / Технология металлов / Сварочное производство / Сварка титана / Технология сварки

Технология сварки титана

Титан - химически активный элемент. При нагреве он взаимодействует с кислородом и азотом воздуха, парами воды, углекислым газом.

В результате взаимодействии с кислородом на поверхности титана первоначально формируется тонкий слой твердого раствора кислорода в α-титане. Выше предела растворимости в системе титан-кислород формируются субоксиды Ti6О, Ti3О, Ti2О, а затем оксиды ТiO, Ti2O3, ТiO2. По мере окисления изменяется окраска оксидной пленки. Золотисто-желтая окраска с металлическим блеском появляется при формировании на поверхности фазы переменного состава на основе ТiO. Содержание кислорода в указанной фазе может изменяться в пределах 20,5—29, 5%, При формировании Ti2O3 появляется темно-фиолетовая окраска; белая окраска свидетельствует о формировании ТiO2.

Образующаяся при обычных температурах темная оксидная пленка предохраняет титан от дальнейшего окисления. Однако при температурах свыше 450 °С пленка начинает растворяться в металле, и процесс окисления ускоряется. Особенно интенсивно идет окисление при температурах свыше 700 °С. Титан взаимодействует также с азотом. Это взаимодействие усиливается при нагреве титана свыше 500 °С. Поскольку скорость растворения кислорода в титане больше скорости растворения азота, то при нагреве титана в атмосфере воздуха основную роль во взаимодействии играет кислород.

Кислород и азот стабилизируют α-фазу, поэтому при повышенной концентрации указанных элементов в поверхностном слое формируется так называемый альфированный слой, характеризующийся повышенной твердостью.

Титан интенсивно взаимодействует с парами воды. При этом процесс окисления протекает более интенсивно по сравнению с окислением на воздухе. Это объясняют структурными особенностями оксидной пленки, формирующейся при взаимодействии титана с парами воды. В этом случае на поверхности титана образуется только высший оксид. ТiO2.

Титан обладает большим сродством к кислороду. Прочность низшего оксида ТiO при температурах выше 1500—2000 °С превышает химическую прочность таких оксидов, как ZrO2, А12O3, MgO, ВеО. Подобные свойства ТiO исключают возможность раскисления титана цирконием, алюминием, магнием, бериллием. Однако в некоторых случаях введение в металл шва циркония позволяет уменьшить вредное влияние кислорода. Поскольку кислород и азот ухудшают механические свойства титана и его сплавов, особенно пластические, то сварочную ванну, а также основной металл в зоне сварки, нагреваемые выше 400 °С, защищают от атмосферы воздуха.

В связи с высокой активностью титана и его сплавов при сварке титана для защиты от атмосферы воздуха можно использовать только пассивные по кислороду среды: инертные газы, фторидные флюсы. При использовании фторидных флюсов возможно развитие химических реакций на границе шлак-металл:

Ti + 2MeF2 = TiF4 + 2Ме.

Эта реакция не приводит к загрязнению металла сварочной ванны неметаллическими включениями, поскольку фториды нерастворимы в жидком металле, но может привести к переходу в сварочную ванну элементов из флюса. Это необходимо учитывать при разработке технологии сварки с использованием флюсов. Титан и его сплавы не склонны к образованию горячи трещин. Это обусловлено благоприятным сочетанием физико-механических свойств титана и его сплавов, а именно малой величиной литейной усадки в сочетании с повышенной прочностью и пластичностью в области высоких температур.

Поскольку титан и его сплавы не склонны к образованию горячих трещин при сварке, то при выборе состава металла шва основное внимание уделяется обеспечению необходимых эксплуатационных свойств. В большинстве случаев используют электродную проволоку, по составу аналогичную основному металлу. Однако необходимо иметь в виду, что в α + β-сплавах с повышением количества β-стабилизаторов (особенно β-эвтектоидных стабилизаторов) металл шва уступает основному по пластическим свойствам.

В подобных случаях путем подбора химического состава металла шва и термообработки сварного соединения изыскивают наиболее оптимальный вариант. Если термообработку после сварки не проводят, рационально использовать металл шва с пониженным содержанием β-стабилизаторов. Это позволяет за счет некоторого снижения прочностных свойств получить более пластичный  металл  шва.

Основной дефект металла шва при сварке титана и его сплавов — пористость. До настоящего времени отсутствует единое мнение относительно причин образования пор при сварке титана  и  его сплавов.

Одни исследователи считают, что образование пор связано с растворением в металле водорода, выделяющегося из металла при повышении температуры в связи с изменением растворимости (рис. 11.7, а). Пористость образуется, если сформировавшиеся в процессе нагрева газовые пузыри не успевают выделиться из сварочной ванны до момента кристаллизации. До настоящего времени нет единого мнения относительно характера изменения растворимости водорода в титане при переходе из жидкого состояния в твердое. Поэтому имеется также мнение, что образование пор из-за водорода связано с его выделением в процессе кристаллизации в связи с резким понижением растворимости в твердом титане по сравнению с жидким (рис. 11.7, б).

Рис. 11.7. Растворимость водорода в титане в зависимости от температуры: а — по В, И. Явойскому; б - по В. И. Лакомскому

Другие исследователи считают, что пористость обусловлена углеродосодержащими веществами (различные жиры), адсорбированными поверхностью металла. Образование пор в данном случае связывают с образованием газообразных продуктов в результате развития реакций между углеродосодержащими веществами и поверхностными оксидами. Например,

ТiO2 + С = ТiO + СО.

При этом предполагают, что образующийся газ частично замешивается в сварочную ванну, особенно при малом зазоре между свариваемыми кромками или их смыкании, и вызывает образование пор. На основании исследований, проведенных в МАТИ, установлено, что не углеродосодержащие вещества, а адсорбированная влага служит основной причиной образования пор. Пористость резко возрастает, если в процессе сварки в результате расширения свариваемого металла происходит смыкание свариваемых кромок.

Повышение пористости в данном случае связывают с образованием в зоне стыка замкнутых микро- и макрополостей — зародышей газовых пузырей в сварочной ванне. В основном рост газовых пузырей происходит в результате объединения (коалесценции) мелких пузырей, а также выделения или разложения влаги, адсорбированной поверхностными оксидами. Выделение и разложение влаги из гидратированной оксидной пленки протекает по схеме

ТiO2·3Н2O →ТiO2-2Н2O + Н2О→ТiO2·Н2О + 2Н2O и т. д.;
Ti + 2Н2O = ТiO2 + 2Н2.

Развитие последней реакции приводит к устойчивому существованию газового пузыря в сварочной ванне на стадии нагрева в связи с тем, что с повышением температуры растворимость водорода в титане понижается. Рост газового пузыря также возможен за счет выделения водорода, растворенного в металле. Однако этот процесс, по-видимому, имеет второстепенный характер.

Повышение роли внешних факторов в образовании пор при сварке титана обусловлено тем, что благодаря хорошей смачиваемости жидким титаном поверхностей различных примесей термодинамические условия гетерогенного образования зародышей пузырей, по-видимому, незначительно отличаются от гомогенных. В результате затрудняется образование зародышей пузырьков.

Этим и объясняется отсутствие пористости в швах, выполненных путем переплавки титанового листа, насыщенного водородом. При сварке подобного насыщенного водородом металла встык в шве образуются поры. Попадающие в сварочную ванну газы, содержащиеся в микро- и макрополостях в зоне стыка, служат готовыми зародышами, в которые выделяется растворенный водород. Застревание газовых пузырей в кристаллизующемся металле приводит к образованию пор.

С целью предупреждения пор при сварке титана и его сплавов используют различные способы, которые можно разделить на три группы:

  • уменьшение количества адсорбированной влаги на свариваемых поверхностях и поверхности сварочной проволоки, а также создание условий для удаления влаги из зоны сварки до формирования сварочной ванны;
  • использование режимов сварки, обеспечивающих наиболее полное удаление из сварочной ванны водорода;
  • связывание и интенсификация выделения водорода из сварочной ванны использованием флюсов.

Снижение количества адсорбированной влаги достигается  за счет повышения чистоты обработки, а также регламентации условий и сроков хранения подготовленных к сварке деталей. Другим направлением снижения пористости из-за адсорбированной влаги может быть предотвращение формирования замкнутых полостей в зоне стыка. Это достигается при сварке с зазором. Пористость металла шва, выполненного аргон одуговой сваркой вольфрамовым электродом, резко снижается при сборке соединения перед сваркой с заданным зазором (0,2—0,3 мм для листов толщиной 1 мм).

Поскольку газовые пузыри при сварке титана формируются на стадии нагрева, то использование режимов сварки, приводящих к увеличению времени существования сварочной ванны, способствует снижению вероятности образования пор. При этом необходимо учитывать возможность роста зерна металла в зоне термического влияния.

Наиболее эффективно предотвращение пор при сварке титана и его сплавов путем использования флюсов на основе галогенов. При аргонодуговой сварке флюсом покрывают торцовые поверхности свариваемых кромок тончайшим слоем. Флюсы наносят в виде пасты, замешанной на спирте, либо натиранием кромок спрессованным стержнем-карандашом. Действие флюса проявляется как в связывании водорода в соединения, нерастворимые в металле (HF или НС1), так и в интенсификации процесса дегазации сварочной ванны летучими галогенидами. По этой причине наилучшие результаты достигаются при введении в состав флюса AlF2 или АlСl2, которые обладают большой упругостью паров в области температур плавления титана и его сплавов.

Промышленное оборудование

Хит Новинка
  • Назначение: выпуск 47 видов изделий методом гиперпрессования. При выпуске изделий другого типа необходима смена оснастки.
  • Уникальность: в автоматическом режиме производство изделий по технологии «мраморного окрашивания».
598 000 руб.
Хит Новинка
  • Назначение: выпуск 35 видов изделий методом гиперпрессования. При выпуске изделий другого типа необходима смена оснастки.
  • Уникальность: компактное этажное размещение, при высокой производительности
Под заказ
Хит
  • Двустороннее прессование
  • Твердость матриц 52-60 ед. по Бринеллю (для справки - твердость сверла 70 ед.)
  • Система управления на базе контроллеров Сименс или Овен. Высокая надежность
  • Автоотключение при аварии: перегрев, падения уровня масла, нерабочий концевой датчик
  • Система радужного (двухцветного) окрашивания изделий
  • Двухконтурная гидравлика - быстрый холостой ход цилиндров и медленное задавливание
  • Мелочей не бывает: пресса в базе комплектуются продувочными пистолетами «Камоци»
  • Пневматика «Камоци» (Италия)
1 099 000 руб.
Хит Новинка
профессиональная производственная линия, обладающая всем основным оборудованием, необходимым для выпуска качественных изделий, таких как: кирпич, брусчатка, лего-кирпич, плитка. Начинающий предприниматель может купить пресс для кирпича Аметист и с успехом начать свой бизнес.
598 000 руб.
Хит Новинка
  • Назначение: выпуск 47 видов изделий методом гиперпрессования. При выпуске изделий другого типа необходима смена оснастки.
  • Уникальность: в автоматическом режиме производство изделий по технологии «мраморного окрашивания».
598 000 руб.
Хит Новинка
  • Назначение: выпуск 35 видов изделий методом гиперпрессования. При выпуске изделий другого типа необходима смена оснастки.
  • Уникальность: компактное этажное размещение, при высокой производительности
Под заказ
Хит Новинка
профессиональная производственная линия, обладающая всем основным оборудованием, необходимым для выпуска качественных изделий, таких как: кирпич, брусчатка, лего-кирпич, плитка. Начинающий предприниматель может купить пресс для кирпича Аметист и с успехом начать свой бизнес.
598 000 руб.
Новинка

Конвейер скребковый трубный (КСТ) - это герметичный трубопровод из стандартной трубы, внутри которой движется цепь с закрепленными на ней скребками.

Скребковый конвейер обладает целым рядом преимуществ по сравнению с традиционными видами транспорта.

В зависимости от требуемой производительности КСТ может быть как круглого, так и прямоугольного сечения.

Под заказ
Новинка
Ленточный конвейер герметичный предназначен для транспортировки сыпучих, пылящих материалов.
Под заказ
Так все больше распространение получают ленточные конвейеры или системы конвейеров на базе пластиковой модульной ленты.
Под заказ

Создание и SEO продвижение промышленных сайтов

Адаптивный дизайн. Интернет магазин с 1С интеграцией.
SEO продвижение. ТОП 10 без ограничения ключевых слов.

Заказать Подробнее
Заказать

Промышленное оборудование

Технология металлов

Товары и услуги

Вся информация, представленная на сайте промпортал.su включая информацию о ценах, наличии товаров и их характеристиках, носит ознакомительный характер и не является публичной офертой, определяемой положениями ст.437 ГК РФ. Подробности о характеристиках, комплектации оборудования уточняйте у консультантов отдела продаж.